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Fig. 13. Brechung der Cu Kt~-Strahlung an 20 ~m grol3en SiO 2- 
K6rnern, aufgenommen mit der Lochblendenkammer 'Feld- 
schlange II' (volle Kurve). Theoretische Berechnung durch 
Gleichung (27): /i<(20)= la(20)/Trb. 
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A b s t r a c t  I n t r o d u c t i o n  

A general theoretical and practical procedure is pre- 
sented for deriving joint probability distributions of 
any number of structure factors in any space group. 
The distributions include all higher-order terms up 
to a preset order of N and thus may be used at any 
approximation. The procedure combines and extends 
the two different methods introduced by Naya, Nitta 
& Oda [Acta Cryst. (1964), 17, 421-433; Acta Cryst. 
(1965), 19, 734-747] for deriving joint probability 
distributions of phase-restricted and not-phase- 
restricted normalized structure factors respectively. 
The general algorithm for deriving joint probability 
distributions of structure factors has been imple- 
mented in a computer program, thus resulting in the 
possibility of computer-aided derivations of proba- 
bilistic relations for any set of structure factors. 
Optionally, the program transforms the resulting 
series-expansion form of the joint probability distri- 
bution into an exponential expression. In low-order 
approximation these exponential expressions usually 
turn out to be identical to expressions known from 
the literature. 

The phase-determining expressions used in present 
direct methods are almost exclusively joint probabil- 
ity distributions (j.p.d.'s) of normalized structure fac- 
tors (n.s.f.'s) in exponential form, e.g. the triplet phase 
sum distribution of Cochran (1955) and the quartet 
phase sum expressions of Hauptman (1975, 1976) 
and Giacovazzo (1976). These exponential ex- 
pressions are approximations since, for mathematical 
reasons, only a limited number of terms can be 
included in their derivation. The method, initiated by 
Bertaut (1955a, b, 1960), Klug (1958) and later sys- 
tematized by Naya, Nitta & Oda (1964, 1965), leads 
to better approximations, but has never been used in 
practical direct methods because the associated calcu- 
lations are complex. This method allows the use of 
higher-order terms and leads to j.p.d.'s in series- 
expansion form, involving Laguerre or Hermite poly- 
nomials, for distributions of not-phase-restricted and 
phase-restricted structure factors (s.f.'s) respectively. 
Naya et al. handle j.p.d.'s of phase-restricted and 
not-phase-restricted s.f.'s separately, whilst in the 
practice of direct methods in many space groups these 
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two different types of s.f.'s both occur and con- 
sequently they also appear simultaneously in a vast 
number of phase relationships. Those relations in 
particular play a crucial role in phase determination 
because they couple the constrained phases to the 
unconstrained ones. Therefore a more general pro- 
cedure for deriving j.p.d.'s, allowing for any combina- 
tion of s.f.'s, is necessary. Another drawback of series- 
expansion expressions is the slow convergence of the 
series, although the employment of Taylor-series 
expansions should finally guarantee this. However, 
to reach convergence the number of terms to be 
included in the series must be very large. It has been 
shown recently for special triplet and quartet distribu- 
tions that bringing the derivation algorithm into the 
form of a computer program solves these problems 
(Peschar & Schenk, 1986, 1987). 

The aim of this paper is twofold. Firstly, a general 
method is presented for deriving j.p.d.'s of s.f.'s. This 
procedure combines and generalizes the two distribu- 
tion types of Naya et al. (1964, 1965) so that all 
combinations of phase-restricted and/or  not-phase- 
restricted s.f.'s can be handled. It will be shown how 
the j.p.d.'s are derived, discussing the most important 
steps in detail and paying attention to the way in 
which the theoretical calculations are performed in 
practice. In contrast to the procedures of Naya et al., 
no a priori selection of n.s.f.'s is introduced. As it 
turns out from the general expression for the j.p.d. 
of s.f.'s, an a posteriori transformation to j.p.d.'s of 
selected n.s.f.'s is easily carried out. 

Secondly, it will be shown that, under the usual 
assumption of a uniform a priori distribution of vari- 
ables for the atomic coordinates, the derivation 
algorithm can be incorporated in a computer pro- 
gram, leading to computer-aided derivations of the 
desired j.p.d.'s. 

Finally, it will be demonstrated that a simple trans- 
formation of low-order approximations of the series- 
expansion expressions, an automated procedure as 
well, leads to known exponential expressions for the 
j.p.d.'s. 

1. Outline of the method of deriving j.p.d.'s 

A general method for deriving j.p.d.'s for any combi- 
nation of n.s.f.'s needs to use crystallographic sym- 
metry explicitly, This symmetry is most simply 
expressed in matrix notation, in which each symmetry 
operation consists of a rotational matrix R and a 
translational vector T. In the case that m symmetry 
operations are present and N atoms are situated in 
the unit cell the structure factor is a sum of n = N~ m 
terms, 

FH = ~ ~j(H)= ~ ~ j (H)+ i  ~, ~'j(H)= An + iBn. 
j = l  j=l j = l  

(1) 

~:j(H) is a sum of m contributions or, equivalently, a 
sum of rn different symmetry-operated terms, each 
with a multiplicity mn (->1) (m =rnm/~; * in R* 
denotes transpose): 

"r H 

~:j(n)=mH Y. f j (n )  exp[Ezri(g*nrj+UTs)] .  (2) 
s = l  

In the course of the derivation it will be necessary to 
distinguish between not-phase-restricted s.f.'s, for 
which both An and BH are present, on the one hand, 
and phase-restricted s.f.'s on the other. For the latter 
only two phase values A~ and A1 + 7r are possible with 
0_< A~ < zr, so (1) reduces to a simpler expression. By 
multiplying the actual phase-restricted structure fac- 
tor F~  by exp (- iAI)  a real-valued structure factor 
Fn is defined, 

n 

F n = e x p ( - i A ~ ) F ' n  = ~ ~:j(H). (3) 
j = l  

This simple transformation, necessary since the calcu- 
lation ofj.p.d. 's requires real-valued variables, brings 
any phase-restricted structure factor to the same form. 
In the end, the final result can easily be transformed 
back to the original phase restrictions. 

The determination of the j.p.d, of n random vari- 
ables X 1 , . . . , X n ,  

P ( x , , . . . , x . )  
oo 

: ( 27 r ) - "  ~ . . .  I e x p [ - i ( u l x , + . . . + u , x , , ) ]  
--CO - - 0 0  

x C ( u l , . . . ,  Un) d u l . . ,  dun, (4) 

amounts to the calculation of its Fourier transform, 
the characteristic function C ( u l , . . . ,  u,), which in 
turn can be expressed as 

C ( u , , . . . , u , )  

=(exp[ i (u l x l+"  " "+UnXn)])randomvariable s. ( 5 )  

The real and imaginary parts of the not-phase- 
restricted s.f.'s, An and BH respectively, and the 
phase-restricted s.f.'s Fn as defined in (3) serve as 
the random variables. The shorthand notations Ai, B~ 
and Fi are employed for An,, BH, and FH,. For con- 
venience not-phase-restricted s.f.'s and variables cor- 
responding to them are from now on referred to via 
the subscript v only while the subscript /z is used 
exclusively for the phase-restricted s.f.'s; so the j.p.d. 
of Ic (>-0) not-phase-restricted and l, (>-0) phase- 
restricted s.f's can be expressed as 

P ( A , , . . . ,  Ate, B , , . . . ,  B,c, F1,. • . ,  F~,) 

=(2rr) -(2'~÷t') I I exp - i  (A~v~+B~w~) 
- c o  - c o  1 

' ]1 + E (f.u,,) 
~ = 1  

× C ( o ~ , . . . ,  vt~, w~ , . . . ,  wt~, u , , . . . ,  u,,) 

x dye . . ,  dvt~ dwl . . .  dWl~ d u l . . ,  rut, (6) 
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and its characteristic function as 

C =  exp i 2 [~j(t t~)v~+~(H~)w,,]  
j = l  v = l  

})> + E 6(H,, lu, ,  • (7) 
/x=l  

Since the random variables Ai, Bi and Fi are functions 
of the atomic coordinates, the average in (7) can also 
be calculated by taking the position vectors rj to be 
the primitive random variables and averaging over 
their allowable values. If one uses C = exp [ ln(C)] ,  
changes the integration variables for the not-phase- 
restricted s.f.'s by means of 

u~=p~exp(iO~)=v~+iw~ v = l , . . . , l ~  (8) 

and assumes the position vectors rj to be independent,  
the following expression for the characteristic func- 
tion is obtained: 

= ~[u~6(H~) C exp In exp i ~ 1 . 
j = l  v = l  

+ u~:*(H~)] 

'r })>1} + X ~ ( H ~ ) u ,  (9) 
/ x = l  r j  

in which the * denotes complex conjugation. 
A second change of variables, 

A~=R~cos(@~)~ f o r v = l , . . ,  l~ (10) 
B~ = R~ sin ( ~ )  J 

transforms (6) into the more useful j.p.d, of the magni- 
tudes Rn and phases ~ n  for the not-phase-restricted 
s.f.'s 

P( R 1 , . . . ,  Rl~, c191,..., ~l~, F1,. . . ,  Flr) 

= R I . . .  Rlc(27r) -2t~-l` 

X I 
- o o  - o o  0 0 0 0 

xexp - i  Y~ [p.R~cos(O.-4)~)]+ 2 F .u .  
v = l  /~=1 

x C ( p ~ , . . . , & ,  O~,... ,  O~, u l , . . . ,  ut,) 

x d p t . . ,  dpz~ d01 . . ,  d01o d u l . . ,  dutr, (11) 

with C ( p l , . . . ,  uz,) as defined in (9). From (9) and 
(11), four important steps in the derivation ofj.p.d. 's 
of s.f.'s follow: 

(i) A Taylor-series expansion of the exponential 
expression inside the average brackets in (9), followed 
by the averaging over rj term by term (the moments 
calculation) yields a series expansion in the integra- 
tion variables p~, 0~ and u,  with the moments as 
coefficients. 

(ii) Then the logarithm of the series expansion of 
step (i) is calculated. This transformation leads to 

another series in the integration variables p, 0 and u, 
the cumulants, which are expressible in the already 
calculated moments (the moments-cumulants  trans- 
formation). 

(iii) Expression (9) shows further that after 
summation of the cumulants the characteristic func- 
tion is obtained. 

(iv) The Fourier transform of the characteristic 
function leads to the j.p.d, aimed at [see (11)]. 

In the following sections the four steps will be 
discussed in detail. 

2. The ca lcu lat ion  o f  the moments  

In order to be able to average (9) over the single 
primitive random variable i), the exponential argu- 
ment of the logarithm is expanded first by a Taylor- 
series expansion. The resulting series can be written as 

..... 8, (12) Wnmax( m ~  1 ...... t~,v~ ..... ~t, ) 
nmax=0  

in which the moments m, defined as 

m & ..... 8,~ 
Ot I , . . . ,Ot lc , 'Y  1 , . . . , T I  r 

\ v = l  /x=l  rj 

(13) 

are the coefficients in the series expansion U.max: 

U, max 

_ 2'~+&oe,, !/3,, ! 

nmax 

cq ..... 3't,,St ,...13t c =0 
Otl + . . . + O e l c + 8 1 + . . . + S I c + ' Y l + . . . ' Y i r  .-~- n m a x  

x exp [ iO,,(fl~ - a~) ] } 

l 
~(iul,)~'~ _ & ..... & 

× I I  - - [ - - - ~ !  j m c . (14) 
Ot I ,-.-,Otlc,'y ! , . . . , ~ 1  r 

/x=l  

The evaluation of (13) needs to be performed for 
moments involving not-phase-restricted s.f.'s only, 
because when one or more phase-restricted s.f.'s are 
involved the moments can be constructed easily from 
the former. 

Moments involving not-phase-restricted 
structure factors only 

From Naya et al. (1964, 1965), the first step in the 
calculation of the expression for the moments of l 
not-phase-restricted s.f.'s, 

m& ..... ~, ( I ] { [~ (H , , ) ] ' ~ [~ :* (H , , ) ]&}~ ,  (15) 
Q'I ,-- ' ,°fl 

\ / v = l  rj 

is the cox~sequent application of the multinomial- 
coefficients-generating expression (A1) (see 
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Appendix) to each of 
expressions. This leads to 

°~l " " 'C~ l  ! 

o , ,  . . . . . .  , , = o  ..... .,=o n n 
r I r I l.'t = I $ = 1  

E ,~,,=% X &,=& 
s = l  s = l  

l 

the 2/-fold [~ (H. ) ]  ~ 

x 1-I {[fj(H~)mn~] %+&} 
v = l  

]} xexp  2~-i ~ (a~-Cl~s)H~T~ 
l s = l  

R, ( ~  -fl~)H~ .r, x exp 2"rri 2 2 * 
v = l  s = l  r j "  

(16) 

To proceed from (16) an assumption has to be made 
concerning the a priori distribution p(rj) of the primi- 
tive random variable rj, in order to perform averaging 
in (16) as the integral 

]} Iexp  27ri ~ R*(a~- f l~s )H~  . r j  p(rj) drj. 
l s = 1  

(17) 

In this paper only the uniform distribution p ( r j )=  1 
for all rj is considered, for which (17) results in a 
delta function, 

~ ~ R * ( ~  -~s )H~ . (18) 
l s = l  

Hence, a non-zero contribution to the moments (16) 
exists only when the restrictive condition 

l r v 

~, R * ( a ~ - f l ~ , ) H , = O  (19) 
v = l  s = l  

with 

is fulfilled. 

E a~  = a~ and /3,,, =/3~ (20) 
s = l  s = l  

Moments involving one or more phase-restricted 
structure factors 

It will be shown now how the moments involving 
one or more phase-restricted s.f.'s follow from 
expression (16). As an example the moments involv- 
ing one phase-restricted structure factor will be dis- 
cussed but the generalization to more phase-restricted 
s.f.'s is obvious. 

For each structure factor Fn as defined in (3), the 
can be expressed as 

~(H)  = mn[exp ( - i A ~ ) ~ ( H ) +  exp (iA~)s~*(H)] 

(21) 

with the complex-valued ~:~(H), 

~:~(H)= Y~ f~(H) exp[2~ri(R*Hrj+HT~)]  (22) 
s = l  

For the definition of ~ in (22) those r ' , = r n / 2  
operations should be selected from the ru operations 
of ~(H)  such that R * , H # - R * 2 H  with s~,s2s 
{1 , . . . ,  *,}. 

Then application of expression (A1) to the 3/-fold 
product of ~(H)  leads to 

3' 

[ ~ ( H ) ] .  = (mn)~ y '  3/! r,.,2=0 rt!r2! [~:~(H)]q[sc~*(H)]r~ 
r l + r 2 =  3t 

× exp [ iA~(r2- r~]. (23) 

After multiplication of both sides by 

l 

I-I [~(H~)]%[~:*(H~)] & 
v = l  

and use of the moments definition (15), the moments 
of l not-phase-restricted s.f.'s and one phase- 
restricted structure factor are given by 

- th  ..... ~, = ( m . )  • y '  m& ..... &.'~ 
f i g  O~ 1 , . . . ,O '1 ,~  Oe I , . . . , o t l , r  1 

ri,r2=0 rl Jr2! 
r l + r 2  = 3' 

x exp [iAl(r2- rl)]. (24) 

Hence, phase-restricted s.f.'s can be handled similarly 
to the not-phase-restricted ones, provided that in the 
moments calculations (16) for the phase-restricted 
s.f.'s only those r~  symmetry operations are selected 
which do not lead to reciprocal vectors which are 
related through a centre of symmetry. After applica- 
tion of (24) for each phase-restricted structure factor, 
the actual moments are automatically obtained. 

Calculation of  moments in practice 

In order to obtain a j.p.d, correct up t o  N -N°rde, 
Norde - 0, moments with all possible numerical com- 
binations of integers ( c q , . . . , a t c ,  /3~,...,/3tc, 
3/~,. . . ,  3/~,) with a ~ + . . . + f l t  + . . .+3/1 <_2 (Norde+  
1) should be considered, as will be verified after 
discussing the Fourier transform. 

Fortunately, the number of moments to be calcu- 
lated as indicated by expressions {19) and (20) can 
be reduced appreciably. A first reduction is obtained 
when in expression (16) all H~ are changed into -H~.  
This leads to an interchange of a~'s and /3~'s and 
hence only to a sign change of the argument of the 
phase factor 

! r v 

E ~ (a~,-fl~,)H~T~. (25) 
v = l  s = l  

Consequently, a limited number of integer combina- 
tions needs to be used for the evaluation of (19) only, 
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since the remaining combinations follow directly. A 
further reduction results from the choice of the uni- 
form a priori distribution. With the notations ru~ (i, j = 
1, 2, 3) for the elements of the 3 x 3 rotational matrix 
R* and ht~, h2v and h3,, for the indices of the reflection 
H~, the three conditions (19), which must be satisfied 
simultaneously, are 

l 1" v 

~, ~, (r ,~h~+r~2~h2~+r~3~h3,)(a~-/3~)=O 
v = l  s = l  

for i = 1, 2, 3. (26) 

For any negative term on the left-hand side of (26), 
- h ~ ( a ~ - / 3 ~ s ) ,  twice its absolute value is added to 
both sides of (26). From (20), this leads to the condi- 
tions 

l 

( tnh t ,  + t~2h2~ + ti3h3~)( a ~ -  /3~) = even 
v = l  

with 

for i=  1, 2, 3 (27) 

+1 if any of the ru~ can be +1 or -1  
(28) 

tu= 0 if all ro~ are 0. 

In the ease of one structure factor in a triclinic, 
monoclinic or orthorhombie space group the condi- 
tions (27) reduce to 

h ~ ( a - / 3 ) = e v e n  for i = 1 , 2 , 3 .  (29) 

So for moments with ( a - / 3 )  odd to exist, all three 
indices should be even. If only one structure factor 
is involved, the stronger condition that moments with 
a - / 3  = odd must vanish can be proved (Foster & 
Hargreaves, 1963). 

Once an (at , . . . , /3~o) combination, i.e. a potential 
non-zero moment, has been selected under the condi- 
tions described, condition (19) should be checked for 
all possible contributing (al~,. . . , /31~) combinations. 
From (19) it can be seen that only summations over 
symmetry-related reciprocal vectors must be per- 
formed. In view of the preceding for each reflection 
H ~ only those symmetry operations should be selected 
with ~ ( g * ~ n ) # ~ ( + R s * E n ) f o r  ( s l ,  s 2 ) ~ ( 1 ,  r~). in 
the computer program for each selected R*H~ vector 
a unique and positive code word is calculated. Condi- 
tion (19) can now simply be evaluated by adding for 
every (a~s,...,/31¢~) combination the respective code 
words and comparing the resulting sum with the code 
word for the null vector. Whenever a contributing 
combination is encountered, its weight is calculated 
from the factorial products in expression (16). In a 
similar way the arguments of the phase factors [see 
(25)] are added and finally reduced to a unique inter- 
val. After incorporating the multiplicities mH and the 
extra weight and phase factors due to phase-restricted 
s.f.'s each moment can be characterized by: (i) the 
(a t , . . . , /31 , )  combination; (ii) a numerical weight; 

(iii) a code number for an extra phase shift x in 
exp (27fix). 

It should be remarked that in the moments defined 
this way for each (a~, /3~) a product of scattering 
factors [fj(H~)] ~+'~ is also present. As it appears 
there is at this point no need to calculate these factors 
numerically, so the (al , . . . , /31c)  combination serves 
also to indicate their implicit presence. For the storage 
of each variable a or 13 four bits are reserved, which 
is sufficient for j.p.d.'s correct up to order N -6 (see 
the section on the Fourier transform). In the 60-bit 
Cyber-750 CDC machine, which was used to perform 
the calculations, in this way two computer words are 
necessary to store the moments code (a t , . . . , /315)  of 
15 s.f.'s. In the present program at most four computer 
words can be reserved for the storage of the moments 
code (al , . . . , /31c) ,  though this is not a strict upper 
limit and may be changed in future versions. Hence, 
at present multivariate moments of up to 15 s.f.'s in 
any space group can be obtained in an automated 
way. 

3. The calculation of the cumulants 

The next step is the calculation of the logarithm of 
the series expansion (12). While the functional form 
of (12) is to be retained, new arguments for U n m a x  

must be calculated, the so-called eumulants, from the 
known moments. Since U0 = 1, this procedure, the 
moments-cumulants transformation, is given by 

co 

I f  ( k ~, ..... ~'~ ) 
E v n m a x x  O~l a t  c 71  7 t  " ~...~ ~ ,..., • 

n m a x =  1 

= l u l l +  ~ g n m a x  ( m ~ :  ..... olc )] n m a x = l  . . . . . .  ,c,7, ..... 7 ' r  j .  (30) 

Upon expansion of both sides of (30), identical series 
must appear. In order to explain the computational 
aspects of this transformation, the right-hand side of 
(30) is expanded, using the series expansion for the 
logarithm (A2) and the multinomial-generating func- 
tion (A1). This results in 

co n + l  

(_l)nn ! ~ ,  U;' . . .  U;; (31) 
n = 0  r, ..... rp = o  rl ! • • • r p  [ 

rl + . . . + r p = n +  l 
l im  p.-, oo 

From (14), each Um in (31) is a series in itself with 
moments 

m ' ,  ..... ~c with at + +/31c + + */t. = m 0~1 ,...,OQc,71 ,...,71 r . . . . . .  

as coefficients. If one now represents each term in 
Um by a different variable Xjm and supposes that each 
Um consists of qm of these terms, then 

qm 

Um = ~. Xjm. (32) 
j = l  
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Subsequent application of (A1) to the Um then leads 
to: 

oo n + l  

E (-1)", , !  E 
n =0  r I ..... rp=0 

rl+...+rp=n+l 
lim p~oO 

i=1 Ill ..... tqii=O tli  ! " " " tqii ! 
\tli+...+tqit=ri 

This expression indicates that under restriction of the 
summation conditions 

P 

Z r~= n + l  
i = l  

and (34) 

qi 
tji= ri f o r i = l , . . . , p  

j = l  

all possible products of x's should be calculated. Each 
x is associated with a product of integration variables 
and a moment, both characterized by the integer 
combination (al , . . . , /3to,  7 1 , . . . ,  yt,). Therefore, 
multiplication of x's can be achieved by the following 
operation: for each integration variable the corre- 
sponding powers are summed, which is done in the 
computer program by simply adding the code words 
for the (a~ , . . . , /3 t~ , . . . ,  Yt,) combination. Because 
only four bits of storage are used for each of the 
variables a, /3 and 3/, in the 60-bit Cyber computer 
15 of these variables can be handled simultaneously. 
The second operation involved is the multiplication 
of the weights, taking into account the extra weights 
which arise from the expansions (A1) and (A2). 
Finally the phase factors are summed as well and 
then reduced to a unique interval. After performing 
these operations for each possible product of x's and 
collecting terms with identical sums of code words 
the left-hand side of (30) is obtained. 

4. The characteristic function 

The last step to obtain the characteristic function 
consists of the summation of the cumulants contribu- 
tions of the n different primitive random variables 
for each of the (at , . . . , /3~c, . . . ,  ~A) combinations 
present, so 

H ( k  ~t ..... O~c ) 
E ~ nmax~. ~1 a'l 71 71 ~" 

j = l  n m a x = l  " " '  c' " " '  , 

= ~ U n r n a x  =~ ( a ,  . . . . . .  ,c.yt ~ q , j .  ..... ( 3 5 )  
n m a x =  1 j 1 

If one assumes that the atoms have similarly formed 
scattering-factor curves: 

fj(H,,) =f(l-lv)zj (36) 

and defines 

nmax nmax 
Z n m a x - "  E Zj :" m Zj (37) 

j = l  j = l  

(the l'actor m can easily be incorporated into the 
weight of the cumulants), the final characteristic func- 
tion can be expressed as 

C = e x p  [ ~ Z n m a x U n m a x (  l,'tl3t ..... 13t ] .max=, .~ ,  ...... ,:.~, ..... , , ) ,  (38) 

in which the prime indicates that the scattering-factor 
product present for each term has been changed into 

{' /{  } l-I [f(H,.) %+~ • 1] [ f ( H . ) ] ' -  . (39) 
v = l  p . = l  

5. The Fourier transform of the characteristic function 

In order to obtain the expression for the j.p.d, of s.f.'s, 
the expression for the characteristic function should 
be substituted in (11) and the integrations, constitut- 
ing the Fourier transformations, performed. In gen- 
eral, there is no analytical solution for this problem; 
however, there are two approximation methods for 
handling it. 

The first, most widely used, method preserves the 
exponential form of the characteristic function, but 
when performing the integrations all terms with 
nmax>3  which consist of p- and 0-dependent 
products, other than I-I pt exp iOt with 0t, # Or2, are 
neglected. This approximation procedure leads to the 
familiar exponential expressions for j.p.d.'s of n.s.f.'s 
[see e.g. Giacovazzo (1980), chapter 7]. 

The second method (Naya et al., 1964, 1965), 
applied in this paper, incorporates all terms up to a 
certain order. In this procedure only terms are 
retained in the exponential for which nmax-< 2. The 
exponential including all other terms is expanded by 
means of a Taylor series. The resulting series in com- 
bination with the exponential can then be integrated 
term by term. 

The result of the Taylor expansion and subsequent 
application of (A1) to expression (38) is 

~ (ZaU3)'3""(ZPUv)~ . (40) 
n = 0  r 3 ..... rp=O r3! rp! 

r3+...+rp=n 
lirn p~oo  

Comparison of (40) with (31) shows that apart from 
the weight factor (-1)"n!  and the presence of the Z, 
they are similar. This means that the operations to 
be performed are almost identical to those for the 
moments-cumulants transformations: the code words 
for the cumulants should be added as well as the 
corresponding phase-factors codes. Furthermore, the 
cumulant weights should be multiplied. Then multi- 
plication of the Z, values is performed in a similar 
way. On the basis of the subscript n of Z,,  a code 
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number is calculated by assigning each different n a 
different storage place in a computer word. Summa- 
tion of the respective Z, codes then yields a code for 
the number and type of Z, present. This expansion 
leads to 

oo 

Cnmax>3 = 1 + ~ If ¢l ~ ..... ~'~ . ~,, ) --  ~ n r n a x \  a l  ,...,Otlc, y i 
n r n a x = 3  ' "" r 

- exp ~. Z n m a x  U n m a x t K  t~ ' ' a  , ]  
_ - - - t ~ t  . . .  ~ t ~  

n m a x = 3  l , - - - ,  lc~Tl, . . . ,~/l  r J 

(41) 

where the ( a ~ , . . . ,  f i t : . . . ,  "Yt,) combinations on the 
left-hand side of (41) have been composed by sum- 
ming those on the right-hand side. The final argument 
I s' ..... ~'o represents the following quantities: 

Ot I ~...~Otlc,~f I , . . . ,TI  r 

(a) the code word(s) for 

( O ~ 1 , " " " '  31c ,  " " " , ~/lr); 

(b) the numerical weight 

W/3t  .....  /3t~ 
O~ 1 ,.--~OQc,'y I ~...,~1 r '  

(c) the phase factor 6 in 

exp "" i6 ~' ..... ~ ~. 
~ Z q r  a l  , . . . ,ateys ..... ~%) '  

(d) a code word for the Z, values present, denoted 
as Z ( n ~ , . . . ,  np); 

(e) the product of scattering-factor constants [see 
(39)]; 

(f) the product of integration variables. 
Therefore the expanded part of the characteristic 
function can be expressed as 

nmax 

Cnmax~3 = 1 + 
n m a x = 3  a t,---, Yl,, ~ t,-.-,/31¢ = 0 

a t + . . . +  a ~ + / 3  t + . . . +  git¢+ Yt + ' - ' +  Y~, = n m a x  '{ x 1"I [iP"f(H")]:'"*/~" 

xexp [i0,,(fl,,-ct,)]} ~ ~[iu~f(H~)]'~.~ 
~,=lt %,! J 

• W ' • c xZ(n~,., n~) ~' "'~' 
' a l  , ' " , ~ l c ~  ~fl , ' " , T I  r 

x exp :'" "6 t~' ..... t~ ~ (42) 
~ ~ , q ' f l  a l  . . . . .  atc ,  Y l  . . . . .  Ytr  ) .  

The only non-zero contributions to the not-expanded 
exponential part of the characteristic function are 
when 

a . = / 3 . = 1  for v = l , . . . , l c  

and (43) 

y~=2  for/x = 1 , . . . ,  l,. 

For tlaese contributions the phase factors are 0, all 
Z ( n l ,  . . .  ,np) can be expressed as ~Nj= z)2 and the 
corresponding weights can be simplified to W(H). 

Since no mixed moments with ai, flj are non-zero for 
i ~ j ,  the approximation (36) appears not to be 
necessary for Z2 so it may be denoted 

N 

Z2(H,)= E [fj(H,)] 2. (44) 
j = l  

Consequently, the exponential part of the characteris- 
tic function can be written as 

lc 

Cnmax_2=exp --¼ ~" [Z2(H~)W(H~)p 2] 
v = l  

-½ E [Z2(H~,)W(H,)u 2] . (45) 
p . = l  

After insertion of the complete characteristic func- 
tion, the product of expressions (45) and (42) in (11), 
two types of integrals must be calculated, those 
involving complex-valued s.f.'s and those involving 
phase-restricted s.f.'s. 

Complex-valued structure factors 

After a change of variables, 

p~ = y~{ W(H~)[Z2(H~)]} -~/2 v = 1 , . . . ,  to, 
(46) 

and if the subscript v is dropped for simplicity, this 
type of integral is 

( i/2)~+a[ W(H)z2(n)]-(,~ +~ +2)/2 

2 ~ ' c o  

x ~ ~ y,,+~+l e x p { _ y 2 / a _ i o ( a _ f l )  
o o 

- iyRu[ W(H)Z2(H)]  -1/2 

x cos (0n - ~u)} dy d0. (47) 

The evaluation of (47) has been given by Naya et al. 
(1965) and results in 

4w exp [-R2Z~-~(H)][ W(H)Z2(H)] -(a+~+2)/2 

x R,~,~ { Ru[ W(H)Z2(H)]-~/2} 

×exp [ - i ( a - f l ) ~ u ]  (48) 

in which the function Ra,o can be expressed in 
Laguerre polynomials. 

Phase-restricted structure factors 

With a similar change of variables as in (46), 

u~, = y~,[ W(H,)Z2(H~,)]  -~/2, (49) 

this type of integral is 

[ W(H)Z2(H)]  -('~+')/2 

oo 

x J (iy)" e x p { - ½ y 2 - i y F H [ W ( H ) Z 2 ( H ) ] - l / 2 ) d y .  
- -00 

(50) 
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The calculation of (50) can be performed with an 
expression given by Klug [(1958), equation (I•16)] 
and this results in 

(27r)~/2[ W(H)Z2(H)]  -(°'+'v2 

x exp [-½F~Z2(H)]H,~ { F , [  W(H)Z2(H)]  -~/2} 
(51) 

H,~ is the Hermite polynomial [(A4) in Appendix]. 

The j.p.d, o f  normalized structure factors 

Expressions (48) and (51) show that the actual 
arguments of the j.p.d, of s.f.'s are the n.s.f.'s. After 
a simple transformation to the normalized variables, 

IEml-- RH~[ W(H,)Z2(H~)]  -'/2 v = 1 , . . . ,  l~ 
(52) 

En,, = Fn,,[ W ( H , ) Z 2 ( H , ) ]  -'/2 tx = 1 , . . . ,  lr, 

the final j.p.d, of the magnitudes I E.I and phases 45, 
of the not-phase-restricted s.f.'s and the normalized 
variables E ,  for the phase-restricted s.f.'s can be 
written 

P ( I E I ] ,  . . . , IE,~I, ( ~ l ,  • • " ,  (~)l c, E l , ' ' ' ,  Eta) 

= I I  [¢r-~lEml exp (-IEml2)] 
v = l  

× H t t  ~ exp (-½e~,.) 
/ z = l  

x 1+ 
n r n a x  = 3  ~ ,  ..... 3,re/3, . . . . . / 3 , .=0  

Ot l +... + Ot,c+ [3, +...+ [3,c+ Yl +... + Tlr= nmax 

v = |  

x exp [ iq~ (/3~ - a~)] / 

, o . = l  

x Z ( nl .. np ) W ~' ..... ;3,~ 
' * ' 0~1 '""Ot/c"~'  """~/Ir 

x exp (27ri8~' ..... .-,~',~ev~ ..... ~,)) .  (53) 

For equal-atom structures, the relation between the 
order up to which (53) is correct and the maximum 
a,/3 or 3' value involved is now readily established. 
From (37), the quotient of the Z, factors in (53) can 
be noted as N ~-nmax+p with p the number of Z, values 
in the product Z ( n l , . . . ,  np). Therefore, the relation 
between the order Norde in N -N°~d~, nmax and the 
individual a's , /3 ' s  and 3"s can be obtained as 

a ~ + . . . + / 3 t + . . . + 3 ' l ,  = n m a x = 2 ( N o r d e + p ) .  (54) 

For example, for distributions correct up to order 
N -6, each individual a,/3 and 3' should be less than 
14. 

To summarize, for the identification of each term 
in (53) the following quantities are necessary: 

(1) the code word(s) for (al , . . . , /31c,  • • •, 3't,), rep- 
resenting the products of Laguerre and/or  Hermite 
polynomials; 

• , • . .  131 .../3~c (2) the numerical welgnt w~,i..i%.~ , ..... ~, ; 
(3) the phase-factor argument ~ ,  ..... ~'f ,i ,, ; 
(4) the code word for the product of Z, values, 

Z ( n , , . .  . ,  n~). 
With items (1) to (4) for each term the j.p.d, is 

completely coded• The calculation has been auto- 
mated with the help of a computer program which 
outputs the quantities (1) to (4) and stores them on 
disk• J.p.d.'s correct to at maximum N -6 c a n  be 
calculated, since for each of the variables only four 
bits are reserved. 

6. Transformation of the series-expansion distributions 
into exponential expressions 

In order to compare the new j.p.d•'s with the familiar 
exponential expressions for the (conditional) j.p.d.'s 
of n.s.f.'s known from the literature, the linear part 
of (53), 

1+ 2 {•.•} , (55) 
n r n a x = 3  

is transformed into an exponential expression by 
employing the equality x = exp [In(x)]. This transfor- 
mation has been applied before, e.g. by Bertaut 
(1956), Karle (1972) and by Karle & Gilardi (1973) 
for the triplet phase-sum distribution in P1 and by 
Giacovazzo (1976) for a conditional quartet phase- 
sum distribution also in P1. Expression (55) changes 
in this way to 

exp {In [ 1 +  

= 1 +  

V t n m a x ( X l ,  • • •  , X q n r n a x ) l }  
n m a x = 3  

V n m a x ( X l , • . .  , X q  . . . .  ) ,  ( 5 6 )  
ni l ' laX= 3 

in which the notation Vnmax(Xl,..., Xqnmax) is a short- 
hand for the collection of all qnmax different terms 
for which a,  + . . .  +/3to +.  • • + Ytr = nmax. Expressions 
(30) and (56) show a striking similarity and since (30) 
can be evaluated by a computer program, (56) may 
be evaluated by computer too. The operations to be 
performed are partly similar to those discussed in 
connection with the cumulants calculation; in par- 
ticular the steps involved in (30) up ~o (34) apply to 
(56) as well. The handling of the code words can also 
be carried out similarly: the weights are multiplied 
and the phase-factor codes and the code words for 
Z ( n t , . . . ,  np) are summed• The summation of the 
( a , , . . . ,  flit, • • •, yt,) combinations involves now only 
the symbolic multiplication of phase-dependent parts 
like exp [ -  i( a - /3  ) ~ ,  ]. For the symbolic multiplica- 
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tion of the magnitude-dependent parts, as represented 
by the functions R~,o([EH[) and H~(EH), a different 
procedure must be adopted. Both R,~,o(IEH[) and 
H~(EH) consist of series expansions in [EH[~and EH 
respectively. Multiplication of such series involves 
not only multiplying normalized structure-factor 
products of the same structure factor but of different 
s.f.'s as well, " 

C, IEH, Ib, f21E.jl b2 with i=j  or i# j .  (57) 

The real-valued coefficients C1 and C2 can simply be 
multiplied. In order to obtain products like 
IEH, Ib'IEHjI b2 in which both i # j  and i=j  terms may 
be present, each term in a series expansion R,~,~ or 
Ha, IEH, I b, is coded by storing the power b of each 
H~ at a different place in a computer word. For each 
nmax value in (56), each individual integer power b 
is always smaller or equal to nmax [see e.g. for the 
R~,t3 function Appendix V of Naya et al. (1965)] so 
up to the order N -5/2 a four-bit storage assignment 
for each structure factor suffices. Consequently, on a 
60-bit machine 15 powers of b~ can be packed in one 
word and handled simultaneously and for 30 structure 
factors only two words of storage are necessary. The 
multiplication of the R=,~(IEHI) and H,~(EH) prod- 
ucts can thus be performed by adding the respective 
code words for the powers since then automatically 
powers of corresponding structure factors, stored at 
the same place, will be added. In this way, for each 
Z ( n t , . . . ,  rip) combination up to a predetermined 
order, in the exponential expression the correspond- 
ing magnitude and phase expressions can be obtained 
solely by simple symbolic manipulations, adding and 
multiplying. As it turns out almost all exponential 
j.p.d.'s which rely on the uniform a priori assumption 
can be reproduced by this routine from expression 
(55). 

mation in order to trace the optimum reliability for 
practical direct methods; 

(ii) the difference in reliability of estimates of 
phase relations of different mixes of phase-restricted 
and not-phase-restricted reflections in one and the 
same structure; 

(iii) the comparison of the reliabilities of estimates 
of phase relations resulting from the known and the 
new j.p.d.'s; 

(iv) the comparison of the reliabilities of estimates 
of phase relations in different space groups; 

(v) the derivation of new j.p.d.'s for invariants and 
seminvariants and checking them by using known 
structures. 

In all cases the computer program will generate 
the relevant j.p.d.'s and write their functional form 
to disk. Then a second program will be used to calcu- 
late with the disk j.p.d, as basis the phase-sum esti- 
mates and compare these values with the actual 
values. 

In future papers various distributions obtained with 
the above procedure and their test results will be 
discussed and compared with those of known 
expressions. 

APPENDIX 
Some definitions 

The multinomial-coefficients-generating expression is 

(al + a 2 + . . . +  a , ) "  = 
r I , . . . , r  n = 0  

r l + . . . + r n = m  

m! 
a~,...a~, 

ri!.., r,!" 

(A1) 

The series expansion for the logarithm is 

7. Concluding remarks 

With the procedures discussed in the preceding para- 
graphs, incorporated in a Fortran V computer pro- 
gram, it is possible: 

(i) To derive j.p.d.'s for any choice of n.s.f.'s in 
any space group under the assumption of a uniform 
a priori distribution of the primitive random variables, 
the atomic coordinates. The order up to which the 
series-expansion expression is correct can be specified 
and is limited in practice only by the amount of 
computer time available. 

(ii) To transform the series-expansion j.p.d, to an 
exponential expression. At low order, the familiar 
exponential expressions are obtained as given e.g. by 
Giacovazzo (1980) in chapters 7 and 8. 

The computer program enables systematic investi- 
gations into: 

(i) the reliability of estimates of phase relation- 
ships based on j.p.d.'s at different levels of approxi- 

~ ( -1)"x "+1 
l n ( l + x ) =  forlxl<l or x = l .  (A2) 

n + l  n ~ O  

The function R,,,,.(IE[) has been defined by Naya 
et aL (1965) as 

- ( : ) ( . ; )  R., .*(IE[)  = Z ( - 1 )  ~'r! (IEI) "+"*-2" 
' r=O 

(A31 

for n -> n* and with R,.,. = R,.,,. 
The Hermite polynomial can 

(Watson, 1952~ as 
be expressed 

t,,/21 (__I)kE,-2k 

H,,(E)=n! ~ k!2k(n_2k) v 
k = 0  

n = 0 ,  1 ,2 , . . .  

(34) 

with [n/2] the nearest smaller integer of n/2. 
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Abstract 

The Takagi-Taupin theory of X-ray diffraction leaves 
an ambiguity in the choice of the wave vector inside 
the crystal. This holds also for its imaginary part 
which describes absorption. One consequence of this 
ambiguity is that the wave vector ko inside the crystal 
need not always satisfy the continuity conditions for 
the tangential component of the wave vector at the 
entrance surface. But if the direction of the imaginary 
part is once fixed then it determines the particular 
manner of solution of the Takagi-Taupin equations. 
Thus a direction of the imaginary part of the wave 
vector in the crystal parallel to the reflecting net planes 
will in general ensure that the continuity condition 
is not satisfied; only a wave vector with an imaginary 
part perpendicular to the crystal surface can satisfy 
this condition. 

1. Introduction 

Dynamical X-ray diffraction in perfect and distorted 
crystals may be described by the Takagi-Taupin 
equations (Takagi, 1962, 1969; Taupin, 1964). An 
important feature of this theory is that the 'ampli- 
tudes' Dh(r) of the generalized Bloch waves are not 
constant but are slowly varying functions of position. 
This fact leaves an ambiguity in the choice of the 
wave vector ko inside the crystal. After Takagi a 
convenient choice is that the magnitude of ko is given 
by 

Ikol = k :  ng, ( la)  

where n is the mean refractive index and K = I/A, 
the wave number in vacuum, and sometimes that 

k0 may satisfy the continuity condition for the tangen- 
tial component of the wave vector at the entrance 
surface. (1 b) 

0108-7673/87/040522-04501.50 

The Takagi-Taupin equations are also applicable in 
the case of an absorbing crystal, provided that all 
relevant quantities now assume complex values. The 
real and imaginary parts of ko are called kor and K, 
respectively, so that 

ko = ko, + iki .  (2) 

The direction of ki may be chosen arbitrarily. 
However, this choice influences the particular manner 
of solution of the equations. Hence it determines 
whether or not ko satisfies the continuity condition 
(lb) and whether or not the parameter ]3h [(4)] may 
be chosen equal to zero. In principle these problems 
are solved in the literature but they have never been 
pointed out explicitly. 

2. Takagi-Taupin equations and boundary conditions 

Let us recall the well known equations, for simplicity 
in the case of a perfect crystal and for the two-beam 
case: 

3 
n Do(r) = -iTrKxgCDh(r) 
3So (3) 

Dh(r) = -iTrKxhCDo(r) + 27riK[3hDh(r) 
3Sh 

where Xh and X~; are the Fourier coefficients of the 
dielectric susceptibility; C is the polarization factor; 
So and Sh are unit vectors along the refracted and 
reflected directions; 

flh = (k2h-k2)/2K 2 (4) 

where ko and k h a re  vectors inside the crystal and K 
is the wave vector in vacuum. The extremities of both 
wave vectors ko and kh are matched through the value 
of/3j,. 
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